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Fermionic Currents in Cosmic Strings
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Currents in cosmic strings built out of fermionic modes coupled to the vortex-
forming Higgs field are reviewed. Massive modes are also exhibited which
illuminate the structure of bosonic currents as the timelike charge is increased.

INTRODUCTION

Extensions of the simplest models of cosmic strings [1, 2], such as

the one envisaged by Witten [3], involve extra degrees of freedom which
are coupled to the vortex-forming Higgs field. This is the source of

currents, bound to the core of the vortices, that may play a fundamental

role in the dynamics of the defects. The superconduct ing charge carriers

may be bosons if, for instance, a charged Higgs field acquires an expectation

value in the core of the string different from the one it has outside. The
carriers can also be fermions if these are trapped in bound modes (among

which are the celebrated zero ones) along the vortex. Grand unified models

like SO(10) provide us with strings having right-handed neutrino zero

modes [4]. Generically, a string can build up a random current (neutral

in the latter case) similar to that in the bosonic case, resulting from the

string self-interactions (like intersections and intercommutings). As the
string self-intersects or intercommutes there is a finite probability that the

Fermi levels will be excited. This results in a current flow smaller in

general than the one we would get with the aid of an external magnetic

field, but still sizable for grand unified theories. Either way the observational

perspectives are even more interesting than those for nonconducting strings:
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they could indirectly be observed as synchrotron sources and as high-

energy cosmic-ray sources [5], or directly be means of time-varying

gravitational lenses [6].
Equally important is to study the possible fundamental fields that

may constitute the charge carriers. In this respect, there have been proposed

in the literature not only vector fields [7] and effective scalar fields, but

also ordinary quark and lepton currents. In the latter case the strings will

have important baryon-number-violating interactions with magnetic fields

and are expected to be responsible for the yet-unexplained primordial
baryogenesis [see, e.g., ref. 8]. Recently also supersymmetric partners,

like squarks and sfermions, have been proposed as candidates for the

conducting properties of the strings [9]; in fact, many of the grand unified

theories at energies well above the electroweak scale predict the existence

of this kind of stable string, so it is of uttermost importance that it be

well understood.
Investigation of fermionic currents [10] was originally made through

an explicit derivation of zero modes, i.e., solutions of a modified Dirac

equation in the field of the vortex having vanishing energy, from which

one can build arbitrary spacelike currents simply by filling up the various

allowed states aÁ la Dirac. It was then realized by Hindmarsh [11] that
there are also solutions of the timelike kind leading to ordinary conductivity

as one fills them.

In this work, we shall recap most of the results concerning these

two kinds of modes to show the similarities with bosonic currents, in

particular in view of the existence in both cases of a clearly defined

phase frequency threshold, namely, the existence of a state of the vortex
where the macroscopic charge diverges and the otherwise generically huge

tension tends to vanish.

Thus, the bound-state solutions of the Dirac equation in a cosmic

string vortex will be investigated in the framework of specific microscopic

models; the present report represents some work currently in progress.

We will concentrate on a reasonably generic kind of model, supposed to
reproduce most of the characteristic features expected of a more realistic

(and complicated) theory, and study the existence of timelike modes. After

the setup of the relevant equations one needs to propose an adequate

ansatz for the intervening fields, in the case under consideration, the

string-forming Higgs, the gauge vector field responsible for the confinement

of the string configuration, and the fermionic field, responsible for the
existence of the current. While the approximate asymptotic behavior in

particular restricted cases for these fields can always be analytically

obtained, we are presently preparing the ground for the complete solution

of the coupled system of dynamical evolution equations numerically. The
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study of the bound states, including zero energy modes along the vortex,

will give us a unique insight into the current generation mechanisms and

of the overall physics regarding the stability of the different string and
loop configurations.

1. ZERO MODES AND THE WITTEN CONSTRUCTION

The basic idea in fermionic superconductivity in cosmic strings lies

in the observation by Jackiw and Rossi [10] that there exist n zero-mode

solutions of the ª Diracº equations in the background of an n-vortex of

the Nielsen±Olesen kind [12], i.e., a solution of the field equations for

a local U (1) symmetry-breaking model involving a Higgs field F and an

associated vector B m , having the form

F 5 w (r) exp(in u ) (1)

B m 5 B (r) d m u (2)

where r and u are cylindrical coordinates, the string under consideration

being considered along the z axis. The functions w (r) and B (r), referred

to hereafter as string profile functions, in principle solve the nonlinear

field equations [13], and in particular one may impose the vanishing of

the Higgs expectation value at the origin, w (0) 5 0, as a necessary
topological requirement. The fermionic model comes into play when one

considers a specific chiral fermion acquiring its mass from a Yukawa

coupling with the Higgs field.

It follows from the mass generation mechanism for the fermions that

they might be expected to be massless in the string’ s core where the Higgs
field vanishes. This turns out to be a correct statement, in the sense that one

can find solutions for a chiral spinor field C } exp[ 2 i (kz 2 v t)], where

v 2 5 k 2, the so-called zero modes, of vanishing energy. The crucial point in

this analysis is that one considers chiral fermions. As a result, left-handed

and right-handed particles (usually called left and right movers in a cosmic

string context) behave differently under the influence of external fields, as
exemplified on Fig. 1.

In the case where the fermions are coupled with the electromagnetic

field, the resulting current J will satisfy, when an external electric field E is

applied along the string (E [ Ez) [3]

dJ

dt
5

q 2

p
E (3)

where q is the electric charge (coupling constant) of the fermion under

consideration and t the elapsed time. This is what is usually meant by super-
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Fig. 1. Phase diagram for the zero modes. Left: The ground state when no external field is

applied: the negative energy states are all filled, so the left and right movers both have vanishing

Fermi energy. Right: An external electric field has been applied (or some other mechanism

has been invoked), thereby shifting the Fermi levels in different directions; a spacelike current

results. Also shown on this figure is the parabola v 2 5 k 2 1 m 2, with m the fermion mass

asymptotically (i.e., where the Higgs field has its usual vacuum expectation value, far from

the string’ s core). It should be clear that when the current corresponds to Fermi levels above

the point v 5 m, it becomes energetically favorable for the bound fermion to escape the string,

i.e., jump from the zero-mode state to one of the available free states nearby on the parabola.

This gives a limiting value for the current.

conducting currents for a cosmic string, although these should more properly

be called persistent currents4: as long as the external field is applied, the

current grows and then remains constant even when E goes to zero. There

is, however, a limit to this process, which is implied by the fact that the

fermions are only effectively massless along the string, but massive outside

the string’ s core, their mass being given by the vacuum expectation value of
the Higgs field: when the Fermi level of the right and left movers exceeds

this mass, the corresponding filled states acquire a nonvanishing probability

to jump off the modes to a free particle state. Thus, there exists a maximum

4 At sufficiently low temperatures certain materials undergo a phase transition to a new (supercon-
ducting) phase, characterized notably by the absence of resistance to the passage of currents.
Unlike in these theories, no critical temperature is invoked in here, save for the temperature
at which the condensate forms inside the string, the details of the phase transition being of
secondary importance. Moreover, no gap in the excitation spectrum is present, unlike in the
solid-state case, where the amount of energy required to excite the system is of the order of
that to form a Cooper pair, and hence the existence of the gap. Having clarified this point,
however, we will stick to the usual convention found in the literature in the rest of this article.
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current which in fact solely depends on the current carrier’ s mass and charge,

given by [3]

Jmax 5
qm

2 p
(4)

which may be as large as 1020 A for GUT particles (1015 GeV).

One can see that this simple reasoning, based on energy conservation

considerations, is somewhat underestimating the maximum current: if the

string were straight, then it is clear that momentum could not be conserved
in the escape process, so that Eq. (4) can at most provide an order-of-

magnitude estimate. When a more complete analysis is made [14] on a string

loop of radius R, it is then found that this equation should be transformed

into J R
max 5 qm2R/2 p , which in principle represents an increase in the maxi-

mum allowed current. However, in practice the current cannot exceed the

value of the mass of the carrier, | J | 2 & m 2, for otherwise they would find it
energetically favorable to leave the vortex, and furthermore , even if massless

along the string, the fermions can interact with each other, and multiple

scattering of bound into free states tends to reduce the current. In fact, a

complete (quantum) analysis, currently in progress, seems to indicate that

no generic, model-independent conclusion can be drawn. The same applies
to the related subject of the stability of the currents, a point whose understand-

ing is crucial in the vorton excess problem [15].

Having discussed these elementary and general properties of fermion

currents induced by zero modes, let us specialize the discussion to a particu-

lar model.

2. MASSIVE MODES

Various other models have been considered in the literature concerned

with fermion bound states trapped in cosmic strings, in particular models in

which not only the zero modes, but also massive bound states could be

responsible for the existence of a current. In this section, we shall summarize
the findings and the underlying assumptions for these models, which fall

essentially in two categories: a coupling of zero modes, equivalent to a

symmetry-breaking term between left and right movers, and the timelike

solutions of the modified Dirac equation in a vortex. This latter category is

the one we shall turn to in the next section, so for the time being let us

investigate the former possibility.
Coupling zero modes through a charged Higgs field has been considered

[11] in particular in the framework where the string-forming Higgs field is

part of a higher-than-one-dimensional representation of the broken GUT

group. It was then shown that, e.g., in the case of an SU(2) doublet, the
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second component of the Higgs field, even though left with a vanishing

expectation value outside the string’ s core, could condense and produce

bosonic conductivity, either of the neutral or of the charged kind [13, 16].
In turn, this bosonic current could couple to the zero modes in such a way

as to modify their corresponding currents, in a way depending critically on

the charges of the fermions. In particular, if the bosonic current is neutral,

there is hardly any change in the previously developed picture, whereas in

the charged case, if the sum of the fermionic field charges were vanishing

(as opposed to any other situation), almost no current would be left on the
strings after a rather short dissipation time. It is clear that any conclusion about

such current would be very much model dependent, so that the cosmological

consequences that could be drawn would be rather inconclusive.

The previous discussion can be illuminated by a phenomenological

coupling between the left and right movers, i.e., a term of the kind d m c Å L c R ,

where in fact d m represents the expectation value of the second Higgs field
involved, and is nonvanishing only on the worldsheet [17]. The chiral current

J 5
m 5 c Å g m g 5 c then yields an anomaly proportional to d m and superconduct iv-

ity, in principle, is no longer assured. However, in this case, a net charge per

unit length (i.e., a timelike current) builds up, as could have been expected

from Fig. 1: in the case at hand, the zero modes no longer exist as solutions
of the ª Diracº equation, but instead one finds a second parabola underneath

the free particle one, i.e., with a mass d m (see Fig. 2). Filling up states on

this second parabola naturally generates a timelike current.

3. A SIMPLE MODEL AND THE PHASE FREQUENCY
THRESHOLD

We shall now consider the simplest model leading to fermionic string

conductivity, which, as we shall show, contains most of the characteristic
features of whatever previously developed model. Consequently, we shall

begin by considering the following simple model, where the background

string is described by the ordinary string profile functions w (r) and B (r), i.e.,

a scalar Higgs field F and its associated gauge vector B m coupled (through

the gauge covariant derivatives below) with the constant q and breaking a
U (1) symmetry

+H 5
1

2
[D ( f ) m F ][D ( f )

m F ]* 2
1

4
( - [ m B n ])

2 2
l
8

( | F | 2 2 h 2)2 (5)

To this background we add a set of chiral fermions C whose dynamics is

controlled by the Lagrangian functional
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Fig. 2. Phase diagram for all modes. The zero modes are still shown as straight lines, while

an extra massive mode has been included as a second parabola below the free state one, and

on which states can also be filled (even though the vacuum is defined in the same manner as

in the previous case involving only zero modes). The same construction as in Fig. 1 reveals

that in this case timelike as well as spacelike currents can be constructed simply.

+f 5 i C Å L g m $(L)
m C L 1 i C Å R g m $(R)

m C R 2 g ( C Å L C R F 1 C Å R C L F *) (6)

In the case of unit winding number [n 5 1 in Eq. (1)], it may be shown
that the spinor solution takes the form

C 5 e 2 i(kz 2 v t) 1
j 1e

2 im u

j 2e
2 i(m 2 1) u

j 3e
2 i(m 2 1) u

j 4e
2 i(m 2 2) u 2 (7)

with j i 5 j i (r) satisfying the following set of equations:
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dX

dr
5 A(r)X with X 5 1

j 1

j 2

j 3

j 4 2 (8)

and

A(r) 5 1
f u

R(r) 2 i (k 1 v ) 0 ig w (r)

i (k 2 v ) f d
R(r) ig w (r) 0

0 2 ig w (r) f u
L(r) 2 i (k 2 v )

2 ig w (r) 0 i (k 1 v ) f d
L(r) 2 (9)

where the functions f depend only on the profile functions and vanish for

r ® ` . It then turns out [10] that only the angular momentum terms with

m 5 1 might have normalizable solutions. The matrix A can be split into a

constant matrix plus a radius-varying one. The constant matrix has two doubly

degenerate eigenvalues 6 ! k 2 2 v 2 with which one reduces the system (8)

to that originally seen in the case of zero modes, with a few differences: in

the zero-mode case, one finds that there are three normalizable states near

the origin, whereas in the v 2 Þ k 2 case, only two are found. As we shall

see below, there are also two asymptotically normalizable solutions in both

cases. With three normalizable solutions near the origin and two for large r,

it is always possible to match the functions in such a way that one can find

an everywhere normalizable solution. With only two near the origin, another

parameter must necessarily be fixed for the functions to match, and this one

turns out to be energy, or more generaly v 2 2 k 2. This explains why the

bound states are quantized in the string, in a way reminiscent of that for

particles in potentials in ordinary quantum mechanics. Figure 2 shows the

new features of this simple model.

The dynamics of such a vortex will then be described by the interactions

of the various states filled: they have the possibility to arrange themselves

in order to relax toward an equilibrium configuration minimizing the energy

and conserving the number of states below the mass threshold m 5 g h . States

above this limit will be scattered off the string by the interactions of the type

shown in Fig. 3.

That diffusion of massive bound states to free ones is possible can also

be seen, surprisingly enough, at the classical level. Indeed, when one computes

the asymptotic form of Eq. (8), noting the Higgs field there goes to its vacuum

expectation value ^ F & 5 h , the constant part of the matrix A can then take

more terms into account, and it assumes the following structure:
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Fig. 3. Fermion interactions in the string. Those proceed via the exchange of a Higgs particle,

with coupling g. The states | f in,off
L ,R & stand for bound (ª inº ) incoming and free (ª offº ) outgoing

states, assuming the momenta of the incoming states are high enough so that phase space

is available.

A | const 5 1
0 2 i (k 1 v ) 0 ig h

i (k 2 v ) 0 ig h 0

0 2 ig h 0 2 i (k 2 v )

2 ig h 0 i (k 1 v ) 0 2 (10)

with eigenvalues now given by 6 ! g 2 h 2 1 k 2 2 v 2, again doubly degener-
ate. Since the vacuum fermion mass is precisely m c 5 g h , one then notes

the existence, exactly as in the bosonic case, of a phase frequency threshold
above which there is no normalizable solution in the sense that, for v 2 2
k 2 . m 2

c , the asymptotic behavior is oscillatory instead of exponentially

damped, representing a superposition of incoming and outgoing cylindrical

waves, i.e., free states with momentum perpendicular to the worldsheet. This

was to be expected, given the analysis in terms of bound states exactly as

in the ordinary quantum mechanical potential situation, and is shown clearly
in Fig. 4.

As this behavior is qualitatively similar to that occurring in the case of

bosonic superconductivity, it is tempting, if not yet justified, to conjecture

that this might also translate into the equation of state relating the energy

per unit length and the tension, and therefore that for the state parameter

v 2 2 k 2 tending to m 2
c , the tension will eventually vanish. More work is

needed, however, to render this conjecture precise, and perhaps proved, in

particular since the actual state parameter ought to be defined as a function

of the various states filled: in principle, one should decompose the fermion

field in terms of creation and annihilation operators and then write it in the
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Fig. 4. Bound states in the string’ s background: the profile functions act on the Dirac field as

a potential, and thus exhibit a quantized number of bound states, until the energy of the state

exceeds the particle’ s vacuum mass, in which case only wave solutions, i.e., free states, can

be found.

string in terms of a varying phase w [not to be confused with the profile

function w (r)] using the equivalence (true only in the two-dimensional
worldsheet)

C Å g a C 5
1

! p
e ab - b w (11)

where e is the 2-dimensional Levi-Civita tensor and the numerical factor is

conventional [3]. Here, the indices take values only along the worldsheet,
and the actual state parameter would then be

w 5 h ab - a w - b w (12)

with h the induced metric.

4. CONCLUSIONS

In this work, we have shown that fermionic superconduct ivity, which

we have summarized by means of an exhaustive survey of the existing

literature, shares some of the same features as the bosonic one. In particular,

we have investigated (and conjectured) the possibility that a phase frequency

threshold might exist.
Regarding future directions, many studies still need to be pursued. Here

we just comment on some of them: in the foregoing discussion we limited

ourselves to the simplest vortex background case. However, one can also

envisage networks of cosmic strings with winding number higher than n 5
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1. Even if from general arguments one would expect the evolving interacting

network to break down into n 5 1 strings (as is found numerically), one

could be interested as well in studying fermion zero-mode solutions in a
general n-vortex background (in this case there would exist n different solu-

tions of the system [10]). In addition, one would also like to be able to

describe the dynamics of the vortex with fermionic currents by means of an

effective equation of state, in a way analogous to the way we describe a

bosonic string [18, 19]. For that it will be necessary to compute integrated

(over the vortex cross section) quantities, and hence we need to know the
full behavior of the relevant fields (as encoded in the field’ s profile functions).

This we can only attain after a full numerical solution of the system is at

hand, work that is not yet done. The formalism [20] will then provide us

with the necessary macroscopic description once we know the details of the

internal structure of the fields. One can then think of applying these new

results to the vorton problem, as it was done [21, 22] in the bosonic case.
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